Thermal Control in 3d Liquid Cooled Processors via Hotspot Separation and Thermoelectric Cooling
نویسندگان
چکیده
Microchannel liquid cooling is a promising technique to handling the high temperature problem of threedimensional (3D) processors. There have been a few works which made initial attempts to optimize liquid cooling by utilizing non-uniformly distributed channels, variable flow rate, wider channels, and Dynamic Voltage and Frequency Scaling (DVFS) combined with thread migration mechanisms. Although these optimizations could be better than a straightforward microchannel liquid cooling design, the cooling of 3D processors is limited due to design-time and run-time challenges. Moreover, in new technologies, the processor power density is continually increasing and this will bring more serious challenges to liquid cooling. In this paper, we propose two thermal control techniques to control hotspots in liquid cooled 3D processors: 1) Core Vertically Placed (CVP) technique. According to the architecture of a processor core, two schemes are given for placing a core vertically onto multilayers. The 3D processor with the CVP technique can be better cooled since its separate hotspot blocks have a larger contact area with the cooler surroundings. 2) Thermoelectric cooling (TEC) technique. We propose to incorporate the TEC technique into the liquid-cooled 3D processor to enhance the cooling of hotspots. Our experiments show the CVP technique reduces the maximum temperature up to 29.58 oC, and 13.77 oC on average compared with the baseline design. Moreover, the TEC technique effectively cools down a hotspot from 96.86 oC to 78.60 oC. Furthermore, the CVP technique supports a 30% increase in processor frequency which results in a 1.27 times speedup of processor performance.
منابع مشابه
Electro-thermal Codesign in Liquid Cooled 3d Ics: Pushing the Power- Performance Limits
Title of dissertation: ELECTRO-THERMAL CODESIGN IN LIQUID COOLED 3D ICS: PUSHING THE POWERPERFORMANCE LIMITS Bing Shi, Doctor of Philosophy, 2013 Dissertation directed by: Professor Ankur Srivastava Department of Electrical and Computer Engineering The performance improvement of today’s computer systems is usually accompanied by increased chip power consumption and system temperature. Modern CP...
متن کاملOn - Chip Thermoelectric Cooling of Semiconductor Hot Spot
Title of Dissertation: On-Chip Thermoelectric Cooling of Semiconductor Hot Spot Peng Wang, Doctor of Philosophy, 2007 Directed By: Professor Avram Bar-Cohen Assistant Professor Bao Yang Department of Mechanical Engineering The Moore’s Law progression in semiconductor technology, including shrinking feature size, increasing transistor density, and faster circuit speeds, is leading to increasing ...
متن کاملInvestigation the effect of driving pattern on thermal performance of Nissan Leaf’s electric motor
Whereas reducing carbon pollutant and fossil fuel energy consumption have become the most important environmental and economic concerns in the world, electric vehicles and their cooling system are in automotive industry manufacturers and designers agendum more than ever. Various motor electromagnetic and mechanical losses act as heat sources and could lead to performance falloff and premature e...
متن کاملEffect of conjugate heat transfer in designing thermoelectric beverage cooler
Peltier technology opens new opportunities for special applications. In the current project, this technology was applied to design and fabricate a portable thermoelectric beverage cooler and thermoelectric cup. The simulation and results of the experiment showed that the common beverage cooler is not a suitable design for ignoring the effect of natural convection in cooling. In our thermoel...
متن کاملCooling of Electronic Chips Using Microchannel and Micro-pin Fin Heat Exchangers
The research community is experiencing a revolution in microscale and nanoscale heat transfer, with a focus on developing fundamental experiments and theoretical techniques. More recently, these advancements have begun to influence the design of electronic systems. A futuristic electronic cooling solution might include high efficiency thermoelectric devices made from nanomaterials for the cooli...
متن کامل